Tuesday, 5 December 2017

الضوضاء تصفية - ب - ن - نقطة تتحرك من المتوسط


الوثائق يوضح هذا المثال كيفية استخدام الفلاتر المتوسطة المتحركة وإعادة العزلة لعزل تأثير المكونات الدورية للوقت من اليوم على قراءات درجة الحرارة كل ساعة، وكذلك إزالة الضوضاء الخط غير المرغوب فيها من قياس الجهد المفتوح حلقة. ويبين المثال أيضا كيفية تسهيل مستويات إشارة الساعة مع الحفاظ على الحواف باستخدام مرشح متوسط. يوضح المثال أيضا كيفية استخدام فلتر هامبيل لإزالة القيم المتطرفة الكبيرة. الدافع التمويه هو كيف نكتشف الأنماط الهامة في بياناتنا في حين ترك الأشياء التي هي غير مهمة (أي الضوضاء). نحن نستخدم تصفية لتنفيذ هذا التمهيد. هدف التمهيد هو إحداث تغييرات بطيئة في القيمة بحيث أسهل لرؤية الاتجاهات في بياناتنا. في بعض الأحيان عند فحص بيانات الإدخال قد ترغب في تسهيل البيانات من أجل رؤية اتجاه في الإشارة. في مثالنا لدينا مجموعة من قراءات درجة الحرارة في مئوية أخذت كل ساعة في مطار لوغان لكامل شهر يناير 2011. لاحظ أننا يمكن أن نرى بصريا تأثير أن الوقت من اليوم لديه على قراءات درجة الحرارة. إذا كنت مهتما فقط في التغير في درجة الحرارة اليومية على مدار الشهر، وتقلبات ساعة تسهم فقط الضوضاء، والتي يمكن أن تجعل من الصعب التعرف على الاختلافات اليومية. ولإزالة تأثير الوقت من اليوم، نود الآن تسهيل بياناتنا باستخدام فلتر متوسط ​​متحرك. مرشاح متوسط ​​متحرك في أبسط أشكاله، فإن مرشاح المتوسط ​​المتحرك للطول N يأخذ متوسط ​​كل N عينة متعاقبة من شكل الموجة. ولتطبيق مرشح متوسط ​​متحرك على كل نقطة بيانات، نقوم ببناء معاملاتنا في عامل التصفية بحيث تكون كل نقطة مرجحة على قدم المساواة وتساهم ب 124 في المتوسط ​​الكلي. هذا يعطينا متوسط ​​درجة الحرارة على مدى كل 24 ساعة. فيلتر ديلاي لاحظ أن الإخراج المصفى يتأخر بنحو اثني عشر ساعة. ويرجع ذلك إلى حقيقة أن عامل تصفية المتوسط ​​المتحرك له تأخير. أي مرشح متماثل طول N سوف يكون لها تأخير من (N-1) 2 عينات. يمكننا حساب هذا التأخير يدويا. استخراج الفروق المتوسطة بدلا من ذلك، يمكننا أيضا استخدام فلتر المتوسط ​​المتحرك للحصول على تقدير أفضل لكيفية تأثير الوقت من اليوم على درجة الحرارة الكلية. للقيام بذلك، أولا، طرح البيانات ممهدة من قياسات درجة الحرارة ساعة. بعد ذلك، صنف البيانات المختلفة إلى أيام واحصل على المتوسط ​​خلال كل 31 يوما في الشهر. استخراج الذروة المغلف في بعض الأحيان نود أيضا أن يكون لها تقدير متفاوت بسلاسة لكيفية ارتفاعات وانخفاض مستويات الحرارة لدينا إشارة تغيير يوميا. للقيام بذلك يمكننا استخدام وظيفة المغلف لربط أعلى مستوياته القصوى والهبوط المكتشفة على مجموعة فرعية من فترة 24 ساعة. في هذا المثال، علينا أن نضمن أن هناك ما لا يقل عن 16 ساعة بين كل ارتفاع الشديد والمتطرف الشديد. ويمكننا أيضا أن نحصل على فكرة عن الكيفية التي تتجه بها الرتفاعات والهبوط من خلال أخذ المتوسط ​​بين النقيضين. عوامل التصفية المتوسطة المتحركة المرجحة أنواع أخرى من المرشحات المتوسطة المتحركة لا تزن كل عينة بالتساوي. مرشح مشترك آخر يتبع توسع الحدين من (12،12) n هذا النوع من المرشح يقترب من منحنى العادي للقيم الكبيرة من n. ومن المفيد لتصفية الضوضاء عالية التردد ل n الصغيرة. للعثور على معاملات للمرشح ذي الحدين، 1212 12 مع نفسه ومن ثم تكرارا تزامن الإخراج مع 12 12 عدد محدد من المرات. في هذا المثال، استخدم خمس تكرارات إجمالية. مرشح آخر يشبه إلى حد ما مرشح توسع غاوس هو مرشح المتوسط ​​المتحرك الأسي. هذا النوع من المرشح المتوسط ​​المتحرك المرجح يسهل بناؤه ولا يتطلب حجم نافذة كبير. يمكنك ضبط عامل تصفية متوسط ​​متحرك أضعافا مضاعفة بواسطة معلمة ألفا بين الصفر وواحد. وهناك قيمة أعلى من ألفا يكون أقل تمهيد. التكبير في القراءات ليوم واحد. حدد بلدك تصفية المتوسط ​​تصفية (ما فلتر) تحميل. المرشح المتوسط ​​المتحرك عبارة عن فلتر بسيط (فير ريسولوتيون ريسبونز) منخفض تمرير منخفض (باس)، يستخدم عادة لتصفية صفيف من عينات البيانات. فإنه يأخذ M عينات من المدخلات في وقت واحد واتخاذ متوسط ​​تلك العينات M وتنتج نقطة الانتاج واحد. وهو بسيط جدا ليف (ممر منخفض مرشح) الهيكل الذي يأتي مفيد للعلماء والمهندسين لتصفية عنصر صاخبة غير المرغوب فيها من البيانات المقصود. كما يزيد طول مرشح (المعلمة M) نعومة الزيادات الانتاج، في حين أن التحولات الحادة في البيانات تتم بشكل متزايد حادة. وهذا يعني أن هذا الفلتر لديه استجابة نطاق زمني ممتاز ولكن استجابة تردد ضعيفة. مرشح ما أداء ثلاث وظائف هامة: 1) فإنه يأخذ نقاط الإدخال M، يحسب متوسط ​​تلك النقاط M وتنتج نقطة إخراج واحدة 2) نظرا لحسابات الحساب المعنية. المرشح يقدم كمية محددة من التأخير 3) عامل التصفية بمثابة مرشح تمرير منخفض (مع رد مجال التردد الضعيف واستجابة مجال الوقت جيدة). ماتلاب كود: بعد كود ماتلاب يحاكي استجابة المجال الزمني لمرشح متوسط ​​متحرك M-بوينت وأيضا يرسم استجابة التردد لأطوال المرشحات المختلفة. وقت استجابة النطاق: في المؤامرة الأولى، لدينا المدخلات التي تسير في مرشح المتوسط ​​المتحرك. المدخلات صاخبة وهدفنا هو تقليل الضوضاء. الرقم التالي هو استجابة الإخراج لمرشح متوسط ​​متحرك من 3 نقاط. ويمكن استنتاج من الشكل أن المرشح المتوسط ​​المتحرك من 3 نقاط لم يفعل الكثير في تصفية الضوضاء. نحن زيادة الصنابير مرشح إلى 51 نقطة ويمكننا أن نرى أن الضوضاء في الإخراج قد خفضت كثيرا، وهو مبين في الشكل التالي. نحن زيادة الصنابير إلى 101 و 501 ويمكننا أن نلاحظ أنه حتى على الرغم من أن الضوضاء هو ما يقرب من الصفر، وانتقالات التحولات بشكل كبير (مراقبة المنحدر على جانبي إشارة ومقارنتها مع الجدار المثالي الطوب الانتقال في مدخلاتنا). استجابة التردد: من استجابة التردد يمكن التأكيد أن لفة قبالة بطيئة جدا والتوهين وقف المحطة ليست جيدة. وبالنظر إلى التوهين في نطاق التوقف، من الواضح أن المرشح المتوسط ​​المتحرك لا يمكن فصل نطاق واحد من الترددات عن تردد آخر. كما نعلم أن الأداء الجيد في المجال الزمني يؤدي إلى ضعف الأداء في مجال التردد، والعكس بالعكس. وباختصار، فإن المتوسط ​​المتحرك هو مرشح تمهيد جيد بشكل استثنائي (الإجراء في المجال الزمني)، ولكن مرشح تمرير منخفض سيئ للغاية (الإجراء في نطاق التردد) الروابط الخارجية: الكتب الموصى بها: تحتاج سيديباري الأساسية إلى تصميم حركة متوسط ​​المرشح الذي لديه تردد قطع 7.8 هرتز. لقد استخدمت الفلاتر المتوسطة المتحركة من قبل، ولكن بقدر إم علم، المعلمة الوحيدة التي يمكن أن تتغذى في هو عدد من النقاط التي يتم متوسطها. كيف يمكن أن يتعلق ذلك بتكرار قطع هو معكوس 7.8 هرتز هو 130 مللي ثانية، و إم تعمل مع البيانات التي يتم أخذ عينات في 1000 هرتز. هل يعني هذا أنه يجب أن أستخدم متوسط ​​حجم نافذة مرشح متحرك من 130 عينة أم أن هناك شيء آخر مفقود هنا طلب 18 يوليو 13 في 9:52 مرشح المتوسط ​​المتحرك هو الفلتر المستخدم في المجال الزمني المطلوب إزالته والضجيج المضاف وأيضا لتمهيد الغرض ولكن إذا كنت تستخدم نفس المرشح المتوسط ​​المتحرك في مجال التردد لفصل التردد ثم الأداء سيكون أسوأ. حتى في هذه الحالة استخدام مرشحات نطاق التردد نداش user19373 فب 3 16 في 5:53 المرشح المتوسط ​​المتحرك (المعروف أحيانا بالعامية كمرشح صندوقي) لديه استجابة مستطيلة النبض: أو ذكر بشكل مختلف: تذكر أن استجابة الترددات أنظمة منفصلة يساوي تحويل فورييه المنفصل من وقت الاستجابة، ويمكننا حسابه على النحو التالي: ما كان الأكثر اهتماما في قضيتك هو استجابة حجم مرشح، H (أوميجا). باستخدام اثنين من التلاعب بسيطة، يمكننا الحصول على ذلك في شكل أسهل لفهم: هذا قد لا تبدو أسهل للفهم. ومع ذلك، بسبب هوية يولرز. أذكر ما يلي: لذلك، يمكننا كتابة ما سبق على النحو التالي: كما ذكرت من قبل، ما كنت قلقة حقا حول هو حجم استجابة التردد. لذلك، يمكننا أن نأخذ حجم ما سبق لتبسيط ذلك أبعد من ذلك: ملاحظة: نحن قادرون على إسقاط المصطلحات الأسية بها لأنها لا تؤثر على حجم النتيجة ه 1 لجميع قيم أوميغا. منذ زي زي لأي اثنين من الأعداد المعقدة محدودة x و y، يمكننا أن نخلص إلى أن وجود الأسي لا تؤثر على استجابة حجم الشاملة (بدلا من ذلك، فإنها تؤثر على استجابة مرحلة النظم). الدالة الناتجة داخل الأقواس حجم هو شكل من نواة ديريشليت. ويسمى أحيانا وظيفة المزامنة الدورية، لأنها تشبه وظيفة المخلوق إلى حد ما في المظهر، ولكن هو الدوري بدلا من ذلك. على أي حال، حيث أن تعريف تردد القطع غير محدد إلى حد ما (نقطة دب 3- نقطة دب -6 أول صف جانبي خالي)، يمكنك استخدام المعادلة المذكورة أعلاه لحل كل ما تحتاجه. على وجه التحديد، يمكنك القيام بما يلي: تعيين H (أوميجا) إلى القيمة المقابلة لاستجابة المرشح الذي تريده في تردد قطع. تعيين أوميغا يساوي تردد قطع. لتعيين تردد مستمر الوقت إلى المجال الوقت المنفصل، تذكر أن أوميغا 2pi فراك، حيث فس هو معدل العينة الخاصة بك. العثور على قيمة N التي تمنحك أفضل اتفاق بين الجانبين الأيسر والأيمن من المعادلة. يجب أن يكون طول المتوسط ​​المتحرك. إذا كان N هو طول المتوسط ​​المتحرك، فإن التردد التقريبي F (صالح لل N غ 2) في التردد المعتاد ففس هو: عكس هذا هو هذه الصيغة صحيحة بشكل غير صحيح بالنسبة إلى N كبيرة، ولها حوالي 2 خطأ ل N2، وأقل من 0.5 ل N4. ملاحظة بعد عامين، هنا أخيرا ما كان النهج الذي اتبع. واستندت النتيجة إلى تقريب طيف السعة ما حول f0 كمقطع مكافئ (سلسلة الترتيب الثاني) وفقا لما (أوميغا) تقريبا 1 (فراك - frac) Omega2 التي يمكن جعلها أكثر دقة بالقرب من عبور الصفر من ما (أوميغا) - فراك عن طريق ضرب أوميغا بواسطة معامل الحصول على ما (أوميغا) تقريبا 10.907523 (فراك - frac) Omega2 حل ما (أوميغا) - frac 0 يعطي النتائج أعلاه، حيث 2pi F أوميغا. كل ما سبق يتعلق 3dB قطع تردد، موضوع هذا المنصب. في بعض الأحيان على الرغم من أنه من المثير للاهتمام الحصول على ملف التوهين في نطاق التوقف الذي يمكن مقارنته مع مرشح إر منخفض التصفية المنخفض الأول (ليد القطب الواحد) مع تردد معين 3dB قطع (ويسمى هذا ليف أيضا تكامل تسرب، وجود قطب ليس بالضبط في العاصمة ولكن بالقرب منه). في الواقع على حد سواء ما و 1 النظام إير إر يكون ديك -20dBdecade المنحدر في وقف الفرقة (واحد يحتاج إلى أكبر N من واحد المستخدمة في الشكل، N32، لمعرفة هذا)، ولكن في حين أن ما لديه نول الطيفية في فن و 1F إيفيلوب، مرشح إير لديه ملف تعريف 1f فقط. إذا كان المرء يريد الحصول على مرشح ما مع قدرات مماثلة تصفية الضوضاء مثل هذا المرشح إير، ويطابق قطع 3DB قطع الترددات لتكون هي نفسها، عند مقارنة اثنين من أطياف، وقال انه يدرك أن تموج الفرقة توقف مرشح ما ينتهي 3DB أدناه من مرشح إير. من أجل الحصول على نفس تموج وقف الفرقة (أي نفس التوهين قوة الضوضاء) كما مرشح إير يمكن تعديل الصيغ على النحو التالي: لقد عثرت على السيناريو ماثيماتيكا حيث احسبت قطع لعدة مرشحات، بما في ذلك واحد ما. واستندت النتيجة على تقريب الطيف ما حول f0 كما القطع المكافئ وفقا لما (أوميغا) سين (OmegaN2) سين (Omega2) أوميغا 2PF ما (F) تقريبا N16F2 (N-N3) pi2. واستخلاص المعبر مع 1sqrt من هناك. نداش ماسيمو 17 يناير 16 في 2:08

No comments:

Post a Comment